叠加定理

介绍

为了分析由两个或多个独立源(电压或电流或两者)组成的线性电路,非常使用叠加定理(特别是对于在不同频率下操作的元件的时域电路)。如果线性DC电路具有多于一个独立的源,我们可以通过使用节点或网状分析方法找到电流(通过电阻)和电压(跨越电阻)。

或者,我们可以使用对要确定的变量的值增加每个单独的源影响的叠加定理。这意味着SuperPosition定理分别考虑给定电路中的每个源,用于查找变量的值(是否电流或电压),最后通过添加由每个源效果引起的所有变量来产生所得到的变量。即使它是复杂的过程,但仍然可以应用于任何线性电路。

回到顶部

叠加定理声明

叠加定理指出,在任何由两个或多个独立源组成的任何线性双边网络中,电流通过(或跨越的电压)是通过(电压跨越的电流)的电流的代数和所有其他来源都被其内部电阻所取代。我们知道,只要源头和贡献之间存在线性,而且由于各种来源同时行动的各种来源的总贡献等于由于一次代理而等于各个源代理的代数总和。

因此,如果电路由N个独立源组成,则必须分析N个电路,每个电路都会产生关于每个单独源的结果。最后必须添加这些个体结果以获得对电路的整体分析。因此,这需要更多的工作,但是,本定理将非常有用地分析复杂电路的各个部分。

回到顶部

分析叠加定理的步骤

1.考虑给定电路中的各种独立源。

2.选择并保留其中一个独立源,并用其内部电阻替换所有其他源,或者用空间源更换电流源和带有短路的电压源。

3.避免混淆恰当地重新标记电压和电流符号。

4.通过使用各种电路降低技术单独作用,找出所需的电压/电流。

5.对于给定电路中的每个独立源重复步骤2至4。

6.代数添加从每个单独的源获得的所有电压/电流(在添加时考虑电压符号和电流方向)。

回到顶部

例子 :

1.让我们考虑以下简单的直流电路以应用叠加定理,使得我们将获得电阻10欧姆(负载端子)的电压。考虑到给定电路中,有两个独立的源作为电压和电流源,如图所示。

image1.

2.首先,我们在一段时间内保留一个源,只有电压源在电路中作用,电流源被替换为内阻(无限),因此它变为开放式,如图所示。

image2.

考虑V.L1是负载端子上的电压,电压源单独作用,然后

V.L1= vs×rL./(R.L.+ R.1的)

= 20×10 /(10 + 20)

= 6. 66伏特

3.单独保留电流源并用其内阻(零)更换电源源(零),因此它变得短路,如图所示。

映像3.

考虑一下V.L2当电流源单独作用时,负载端子是否跨越电压。然后
V.L2= I.L.×R.L.

一世L.=我×r1/(R.1+ R.L.的)

= 1×20 /(20 +30)
= 0.4安培

V.L2= 0.4×10

= 4伏

因此,根据叠加定理,负载上的电压是V的总和L1和V.L2

V.L.= V.L1+ V.L2

= 6.66 + 4

= 10.66伏特

例2:

考虑以下电路,我们将通过叠加定理通过4欧姆电阻确定电流I。

考虑I1,I2和I3分别是由于12V,20V和4A源引起的电流。然后,基于叠加定理I = I1 + I2 + I3。因此,让我们用每个来源确定这些电流。

image4.

回到顶部

只有12V电压源:

考虑以下电路,其中仅在电路中保留12V源,其他源代替其内部电阻。

通过使用10欧姆的电阻6欧姆组合,我们得到16欧姆电阻,该电阻与6欧姆电阻平行。然后这种组合产生,16×6 /(16 + 6)= 4.36欧姆。因此,等效电路将如图所示。

图像5.

然后电流通过4欧姆电阻,

一世1= 12/8.36

= 1.43 A.

只有20 V电压源:

仅保留20 V电压源并更换其内阻的其他源,然后电路变为如下所示。

图像6.

将网格分析应用于循环a,我们得到

22ia - 6i.B.+ 20 = 0

22ia - 6i.B.= -20 ..................(1)

对于循环b,我们得到了

10.B.- 6ia = 0

ia = 10i.B./ 6.

替代IB在等式1中

22(10I.B./ 6) - 6iB.= -20.

一世B.= - 0.65

因此,我2= IB = -0.65

只有4A电流源

考虑下面的电路,其中仅保留电流源,并以其内部电阻替换其他源。

image7.

通过在节点2上应用节点分析我们得到,

4 =(v2/ 10)+(v2- V.1/ 6 ..................(2)

在node1,

(V.1/ 6)+(v1/ 4)=(v2- V.1/ 6.

V.2= 3.496 V.1

从等式2中取代v2,我们得到

V.1= 0.766伏特。

因此我3.= V.1/ 4.

= 0.766 / 4

= 0.19安培。

因此,根据叠加定理,我= i1+ I.2+ I.3.

= 1.43 - 0.65 + 0.19

= 0.97安培。

回到顶部

使用AC电路的叠加示例:

考虑下面交流电路,我们将使用叠加定理确定4欧姆电阻中的电流值。

图像8.

情况1:只有20˚0电压源

通过将电压源保持在电路中,通过电路的电流被确定为

I1 =20˚0/(4 + J4)

=20∠0/(5.65±45)

= 3.53±45或2.49 -J2.49 A

图像9.

案例2:只有4∠90电流源

通过单独在电路中保持电流源,通过电路的电流I2确定为

通过当前分裂方法,I2 =4∠90×4J /(4 + J4)

=490×490(5.65±45)

=490×0.70745

=2.828∠135或-1.99 + J1.99 A

图像10.

通过电阻器4欧姆的所得电流是i = I1 + I2

=3.53∠-45 +2.828∠135

=0.785∠45或0.56 + J0.56 A

回到顶部

叠加定理的局限性

1.对于电力计算,叠加定理不能根据线性度使用本定理工作。因为功率方程不是线性的,因为它是电压的电压和电流或平方的乘积或电压的平方。因此,不可能通过具有叠加定理的给定电路中的元件消耗的元件所消耗的功率。

2.如果负载的选择是变量或负载电阻频繁变化,则需要执行电流或电压的每个源贡献以及它们的负载电阻的每个变化的总和。因此,这种非常复杂的分析复杂电路的过程。

3.本定理仅适用于线性电路和非线性电路(具有晶体管和二极管),我们无法应用。

4.仅当电路具有多个来源时,此定理仅适用。

回到顶部

2回复

发表评论

您的电子邮件地址不会被公开。必需的地方已做标记*

电子机器Favicon.
<\/i>","library":""}}" data-widget_type="nav-menu.default">
Baidu
map